A Sequential Semismooth Newton Method for the Nearest Low-rank Correlation Matrix Problem

نویسندگان

  • Qingna Li
  • Houduo Qi
چکیده

Based on the well-known result that the sum of the largest eigenvalues of a symmetric matrix can be represented as a semidefinite programming problem (SDP), we formulate the nearest low-rank correlation matrix problem as a nonconvex SDP and propose a numerical method that solves a sequence of least-square problems. Each of the least-square problems can be solved by a specifically designed semismooth Newton method, which is shown to be quadratically convergent. The sequential method is guaranteed to produce a stationary point of the nonconvex SDP. Our numerical results demonstrate the high efficiency of the proposed method on large scale problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix

The nearest correlation matrix problem is to find a correlation matrix which is closest to a given symmetric matrix in the Frobenius norm. The well-studied dual approach is to reformulate this problem as an unconstrained continuously differentiable convex optimization problem. Gradient methods and quasi-Newton methods such as BFGS have been used directly to obtain globally convergent methods. S...

متن کامل

Quadratic Convergence and Numerical Experiments of Newton’s Method for Computing the Nearest Correlation Matrix

The nearest correlation matrix problem is to find a correlation matrix which is closest to a given symmetric matrix under the Frobenius norm. The well studied dual approach is to reformulate this problem as an unconstrained continuously differentiable convex optimization problem. Gradient methods and quasi-Newton methods like BFGS have been used directly to obtain globally convergent methods. S...

متن کامل

A Semismooth Newton Method for the Nearest Euclidean Distance Matrix Problem

The Nearest Euclidean distance matrix problem (NEDM) is a fundamental computational problem in applications such as multidimensional scaling and molecular conformation from nuclear magnetic resonance data in computational chemistry. Especially in the latter application, the problem is often large scale with the number of atoms ranging from a few hundreds to a few thousands. In this paper, we in...

متن کامل

Computing a Nearest Correlation Matrix with Factor Structure

An n×n correlation matrix has k factor structure if its off-diagonal agrees with that of a rank k matrix. Such correlation matrices arise, for example, in factor models of collateralized debt obligations (CDOs) and multivariate time series. We analyze the properties of these matrices and, in particular, obtain an explicit formula for the rank in the one factor case. Our main focus is on the nea...

متن کامل

A Majorized Penalty Approach for Calibrating Rank Constrained Correlation Matrix Problems

In this paper, we aim at finding a nearest correlation matrix to a given symmetric matrix, measured by the componentwise weighted Frobenius norm, with a prescribed rank and bound constraints on its correlations. This is in general a non-convex and difficult problem due to the presence of the rank constraint. To deal with this difficulty, we first consider a penalized version of this problem and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011